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Abstract

In 1941 H Kramers and G Wannier discovered a special symmetry which
relates low-temperature and high-temperature phases in the planar Ising model.
The corresponding transformation, the Kramers—Wannier transform, is a
special non-local substitution in the partition function. The existence of such
transformations is a general property of lattice spin systems. Generalization
of the KW transform to spin systems with non-Abelian symmetry is essential
for many problems in statistical physics and field theory. This problem is very
difficult and cannot be carried out by classical methods (like Fourier transform
in the commutative case). We present new results which solve this problem for
finite non-Abelian groups.

PACS numbers: 02.20.—a, 05.50.+q

Introduction

In the classical paper of Kramers and Wannier [1] a special symmetry was discovered,
which relates low-temperature and high-temperature phases in the planar Ising model. The
corresponding transformation, the Kramers—Wannier (KW) transform, is a special nonlocal
substitution of a variable in the partition function. This substitution transforms the partition
function W defined by the initial ‘spin’ variables taking values in Z, and determined on the
vertices of the original lattice L to the partition function W determined on the dual lattice L*
spin variables taking values in Z,.
Furthermore, we will use the following transformation of the Boltzmann factor

B — B* = arthe B = (kT)™! 0.1)

to get the correct form of the dual partition function W.
The existence of such transformations is a general property of lattice spin systems that
possess a discrete (and not only discrete) group of symmetry. The KW transform allows the

determination, for many physically important systems, of the point of phase transition in the
cases when the explicit analytical form of a partition function is unknown.
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Generalizations of the KW transform in spin systems with different symmetry groups is
essential for many problems in statistical physics and field theory. In fact, it is very important
to carry out KW transforms for four-dimensional gauge theories in which the corresponding
phases are free quarks and quark confinement. In this case we need to construct KW transforms
for non-Abelian groups.

The KW transform for systems with a commutative symmetry group K, particularly
Z, and Z (like the Ising Z,-model), can be carried out by general methods. In this case the
KW transform is a Fourier transform from a spin system on the lattice L to the spin system on
the dual lattice L with spin variables taking values in group K, the group of characters of K.
This result was obtained by a number of authors, see [2—4] and references therein. From the
mathematical point of view this result is a generalization of the classical Poisson summation
formula for the group Z.

In this paper we present new results which solve this problem for finite non-commutative
groups. Our method was inspired by the recent achievements in the theory of multivalued
groups [5].

The efficacy of our approach will be illustrated by examples of KW transforms for the
icosahedron /s and dihedral groups D,. These examples are also interesting for physical
applications, for example, to search out the line of phase transitions in quasicrystals with
icosahedral symmetry or discotic liquid crystals with the symmetry D,,.

The main result of our paper is the definition of the generalized KW transform, based
on the mapping of the group algebra C(G) to the space of complex-valued functions on
G. The construction of this transformation clarifies its real meaning and offers far-reaching
generalization [2, 6, 7].

The layout of the paper is as follows. In section 1 we recall, following [2], the construction
of the KW transform for Abelian groups. In section 2 we introduce some relevant algebraic
notions such as the group algebra C(G) and the space of regular functions C[G]. We also
construct the canonical pairing of C(G) with C[G]. In section 3 we describe orbits of the
adjoint representation and the regular representation of the group G. In section 4 we carry
out the generalized KW transform for finite groups. In section 5 we apply our general results
to special cases of subgroups of the group SO(3), including /s and D,. In the conclusion
we discuss some applications of these results, in particular some connections with quantum
groups.

1. KW duality for Abelian systems

Let us recall the construction of KW duality for commutative groups. We shall follow [2]. Let
us consider a planar square lattice L with unit edge. Let x = {x,} = {x;, x2} (where x; and
X, are integers) represent a vertex, and efi = {e}“ ei} = Sﬁ basis vectors of L. We will often
use the notation x + & = {xu + efj}. A double index x, « is convenient for denoting the edge
in the lattice which connects the vertices x and x + &. In what follows we shall also need the
dual lattice, . whose vertices are at the centres of the faces of the original lattice L. We denote

the coordinates of a vertice of L by i:
< 1,0, 1,2
X = {.X'M + Eeu + 56‘#}.

We define spin variables s, on vertices of L, these take values in some manifold M, which we
call the spin space. We confine ourselves to the case of a finite set M.
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The simplest Hamiltonian of such a spin system involves only interactions of nearest
neighbours

H = Hs5ea) (1.1)
where the Hamiltonian H (s, s") is a real function of a pair of points from M, with the properties
H(s,s)=H(s',s) (1.2a)
H(s,s’) >0 for arbitrary s seM H(s,s)=0. (1.2b)

The Hamiltonian prescribes a structure similar on M to a metric structure (which in the general
case is not metric, since we nowhere require that the triangle inequality holds), which we shall
call the H structure.

Of particular interest are examples in which the manifold M is a homogeneous space,
i.e., there exists a group G of transformations of M which preserves the H structure:
H(gs,gs’) = H(s,s') for arbitrary s,s’ € M. In this case the spin system has global
symmetry with group G.

Important special cases are systems on groups. For these the spin manifold coincides with
a group G: s; = g; € G, and the Hamiltonian is invariant under left and right translations:

H(hg,hg') = H(gh,g'h) =H(g,g) for arbitrary i € G. (1.3)
The general H function of the system on the group can therefore be put in the form
H(gig)=H(g18") =D hp)xy(21g") (1.4)
P

where x,(g) are the characters of the pth irreducible representations of the group G, and the
constants s (p) are chosen so that H has the properties (1.2) and are otherwise arbitrary.
The partition function of the general spin system with the Hamiltonian (1.1) is

Z= [TWsk sua) (1.5)

S EM x,a
where
W(s,s") =exp{—H(s,s)}. (1.6)
According to equation (1.2) the function W has the properties
W(s,s')=W(',s) 0< W(s,s) <1 W(s,s)=1. 1.7)
For the system on a group we have also
W(gg)=W(gigy')  Wg™H=W. (1.8)

For a spin system on a group G the sum over states (1.5) can be put in the following
equivalent form:

z=>Y JIWe[]s00s D) (1.9)
2a€G X 3
where the summation variables g, , are defined on the edges of the lattice
Or = 81,18x41.28,5 182 (1.10)
and the é-function is defined by the formula
1 if g=1

8. 1) = {0 otherwise.
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In fact, the general solution of the connection equation Qz = [ is

8x.a0 = 8x8 ;4.1&
and this brings us back to equation (1.5).
Systems on commutative groups are a special case, in which the §-function in
equation (1.9) can be factorized in the following way:

505, 1) =Y xp(02) =Y xp(@e.)Xp(8i DXy (150X, (82.2)- (1.11)
P 14
This sort of factorization is of decisive importance and allows for a unified presentation of the
KW transform for all commutative groups.

We note that for acommutative group G all irreducible representations are one dimensional
and their characters x, form a commutative group G (the character group) with a group
multiplication defined in accordance with the tensor product of representations. By definition

Xpip(8) = Xp (&)X (8) X1 (®) = x,"(9)

and the unit element of G corresponds to the identity representation of G. Accordingly, the
summation in equation (1.11) can be regarded as a summation over the elements of the dual
group G.

Substituting the expansion (1.11) in equation (1.9), an obvious regrouping of factors yields

zZ= Z l—[ W(gx.a) l_[ Z Xp: (8x.1) Xps (gx+i,2)Xp;‘ (gx+ﬁ,1)Xp;‘ (8x.2)

Sy €G X, X px
=2 [1W(pspils) (1.12)
pi€eG X«
W(pspiis) = Y W xXp (@1 (&) = Y W)X, o1, (2)- (1.13)
geG geG

The expression (1.12) defines a new, dual spin system on the dual group G with a new
Hamiltonian A, which is defined by the formula

exp{—H (p)} = W(p). (1.14)
The result can be formulated in the following way.
Proposition 1.1. A spin system on a commutative group G with a Hamiltonian H(g) (g € G)

is equivalent to a spin system on the character group G (and on the dual lattice) with the
Hamiltonian H(p)(p € G) given by the Fourier transform

exp{—H(p)} = Y exp(—H(8)}x,(8)- (1.15)

geG

This is a Kramers—Wannier transform. In contradistinction to the ‘order variables’ g, the
name ‘disorder variables’ can be given to the dual spins ps.

2. Algebraic constructions’

(A) The group algebra C(G) of G.
Let G be a finite group of order n with elements {g; = e, ..., g,}.

L For further details of exploiting algebraic constructions one can consult the books [8, 9].
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Definition 1. The group algebra C(G) of G is an n-dimensional algebra over the complex
field C with basis {g; = e, ...gy}. A general elementu = c(g) € C(G) is

U=y ag. 2.1)

The product of two elements (convolution) u, v € C(G) is defined as

n n k
uv = (Zaig,) (Z ,ngj) = Z(ngk) Yk = Z aifj. 22)
i=1 i=1 1

8i8j=8k

(B) The ring of functions C[G] on G.

Definition 2. C[G] is a linear space of all complex-valued functions on G and the product is
defined pointwise:

(f1- () = fi(g) 2(9) (2.3)

(C) let us determine the canonical pairing (-, -) of these two spaces
C(G)®C[G]— C
if ueC(G) and f € C[G] then 2.4)

w® f— (u, f) =) aif(g).

We choose as a basis in C[G] functions such that (g;, gj) = (Sl.j where 8{ is the Kronecker
symbol.

This pairing enables us to identify C(G) and C[G] as vector spaces.

3. Canonical actions of group G

We now define two canonical representations, the adjoint representation on C(G) and the
regular representation on C[G].

(A) T(g) : C(G). The adjoint representation is defined on the basis consisting of elements of
G by
g:8 — 88ig . (3.1)
The adjoint representation ad G decomposes in the direct sum of irreducible
representations and split C(G) in the sum of subspaces invariant under the adjoint action.
Each irreducible subspace H; relates to the orbit of ad G (3.1). The number of H; is equal
to m, the number of elements in the space C(G)/[C(G), C(G)], where [C(G), C(G)] denotes
the commutant of C(G).

(B) T(g) : C[(G]. Let us define the canonical representation 7 in the space C[G] as the
(right) regular representation as

T@Q:f=T@: f(g) = f(gg gei f(@ eClG]l. (3.2

It is well known that in the decomposition of the regular representation into irreducible
ones all irreducible representations appear with multiplicity equal to the dimension of the
representation

T:devk
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where Vj is the irreducible representation of degree k and d; is the degree (dimension) of Vj
(multiplicity of irreducible representation).

Proposition 3.1. The number m of irreducible representations T is equal to the number of
orbits of T.

(C) The canonical scalar product in the space C[G] is

(fi. LY =1/n)_ filg)fag)  fi, f» € CIG]. (3.4)

k=1
The characters x;(g) of the irreducible representation of G form the set of orthogonal
functions with respect to the scalar product (3.4).
Now we construct the basis in the space C[G]. Let us choose the character x;(g) and act
on xi(g) by the group G with the help of the right regular representation:

Rg x1(8) I=1,...,n. 3.5)

We obtain the space V; with dim V;, = |xx(g)|>. As a result we get the factorization of
CIG]:
C[G]=ZV1< Mg ={k=1,...,mg}
keMg

where m is the number of irreducible representations of G.

Orthonormalizing the set of functions (3.5) we obtain the basis in the space V;. Since
V. are pairwise orthogonal, applying this procedure to all characters x; we obtain the desired
basis in C[G].

Definition 3. We shall call the dual space G 10 G the basis in C[G] which we construct in the
section C.

Motivations for such definition ensue from the case of a commutative group K. The
characters of K are one dimensional and the action of G on characters is simply the
multiplication on the scalar, the eigenvalue of the operator R,. The derived basis is the same
as the set of elements of the group K.

4. The KW transform for finite groups

Let us consider the adjoint representation ad G of G, on the space C(G), induced by

g8 — ggrg

Let us denote by ng the orbit relative to the adjoint action for g € G, and by 6; € C[G]
its characteristic function

1 if gse€ g,f
Si(gs) = .
£(8s) { 0 otherwise.

Let m¢ be the number of conjugacy classes relative to the adjoint action of G. Let us
choose representations of the classes

g1,...,gk].

Lemma 4.1. A linear map

W:C(G)—C
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satisfies the condition

W(g) = W(gigs ) “.1)
for every g1 € G,

W =Yy, € CIG] = Hom(C(G),C)

j=1

W(g) =D 78, (8). 4.2)

We obtain a general form of the adjoint invariant linear mapping, if we choose as y =
1, -+, Ym), the vector of free parameters.
Now we shall find the form of a general linear mapping

W:C[G]— C

determined by the characters x'(G).

The set of characters x',..., x™ of the irreducible representation of G form the
orthonormalized basis (relative to the scalar product (3.4)) in C[G]. Here and further x!
is the character of the trivial one-dimensional representation.

We get W =37,/ as

W) =Y 9’ v) 4.3)
j=1

since characters of representations by lemma 4.1 are ad-invariant functions, we introduce the
matrix I = y; using the expansion

x'=) v 44)
j=1

Let us denote by g°, ..., g”~! the orthonormalized basis in the algebra C[G], dual to the
basis go, - . ., gu—1 in the group algebra C(G), i.e.
(¢',8)) =8}
Let D be the duality map
D: C(G) — C[G] D(g) = g~ (4.5)

Theorem 4.1. [f we pose
VjZi)/}f/l J=1....m
=1
then by the canonical duality D the linear map
W:C(G)— C W(g) = i)’jsk,» (8)
j=1

passes to the linear map

W:ClGl—C W)=Y 9x.¥)
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and maps W and W themselves will be determined by the same function, more precisely

m m
W(g) =Y vide,(g) =nYy_ pix’(g) =nW(g). 4.6)
j=1 j=1
Proof. For any g, we have

m m m

W(g) =D 8, (@) =) > vimd ) =Y 9| D vide | (20
=1 j=1

j=1 j=1 1=1

I
NE

Pix' g =nY_ mix' gy =nW(g".
=1

~
I

1

Definition 4. We shall call the transform
W(gs) =D vid(g) > W(g) =1/n>_ yx'(s") where y; = i vim @47
! I=1
is the Kramers—Wannier transform for finite groups.
In the next section we consider several examples which confirm the coincidence of our

approach with the former one in the known cases and enables us to find explicit KW transforms
in some earlier unknown cases.

5. Examples

(A) Commutative case G = Z,. Let us consider first the special case G = Z3 = {1, g, g%}.
In this case §; = 8(g — g/~ '), j = 1,2, 3. Then

Xl =81+32+83

x> =081 +28 +2°5; (5.1)
X =81 +2°8 + 283 asz* =z
where z = exp2mi/3, and x*(g/) = z*DJ(k = 1,2,3) are the characters of one-

dimensional representations. Hence

11
r=@)=[1 z & (5.2)
1 2 z

and we get =Ty,
If we choose y; = 1, y» = y3 = y, we obtain

1+2y 1—vy
P = H =73 = — 5.3
7 3 h=m 3 (5.3)
and hence
A l—y
n/h = 5.4

1+2y°
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For the general case of the group Z, we have to replace the formula (5.1) for characters

x', ..., x" with
x'=8+8+---+6,
X2 = 51 +Z§2+Zn71(3,,
(5.5)

X' =8 +z""V8 +28,

and for I' = (y!) we get
1

1 n—1
r= < < (5.6)
1 Zn_l e d
In the special case of choosing parameters y;:
V1=17V2,-~~7Vn=]/
we obtain
5.7

L e
o l+@m—-1Dy
These formulae coincide with the similar one in [2].
(B) The group S3. This is the first non-trivial example of non-Abelian groups which was

studied in [2]. Following our general approach we split the group Sz in three classes of

conjugacy elements or three orbits:
S3 = {Q = {e} Qb = {a, a®} Q3 = {b, ab, a’b}}.
The characteristic functions are
81 =68(2) =8(g—e)

Following our general procedure (see (4.4)) and using
X7 =081 +8 — 8

8 = 8(82) 83 = 8(823).
x' =8 +68+8; xP=28 -6,

we get the matrix

1
r=(H)=[1 1 -1
2

and hence § =Ty
P = (1 + 272 +3y3)
(5.8)

P = (1 + 272 — 3y3)
=301 —n)
with the following relation:

N+R+2=n.
If we choose the free parameters yi, y», 3 as 1, y», 3 we obtain two independent

parameters 1, j»
. 7 1+2y =3y R 4] 2(1 — )
=it =__"1 77 flp="=—-——" 5.9)
N 142y +3y;

m =
N 1+2 43y
which coincide with the formula (5.7) in [2].
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Remark 1. Let us mention the missing factor 2 in the nominator of 7, in (5.7) in [2].

(C) The group of icosahedron I5. This group is isomorphic to As, the group of even
permutations of five elements. The order of the group is equal to 60. The theory of irreducible
representations of As is well known, see e.g. [6]. We summarize the necessary facts. There
are five classes of conjugacy with representatives

e,a; = (12)(34) ap = (123) az = (12345) as = (21345). (5.10)

The number of characters of irreducible representations is also equal to 5. Following [6] we
present the table of characters:

e [ (12)(34) [ (123) [ (12345) | (21345)
A 1 1 1
3] -1 0o | &5 | 15
3 -1 0 | 55 | 5
x4l o 1 -1 -1
s 1 -1 ] o0 0
I 15 [ 2 | 12 12

The last line indicates the number of elements in each conjugacy class. The characteristic
functions have the form

81 =68(2) =8(g—e) 8y = 3(§0) 83 = 8(S23) 84 = 8(S24) s = 8(S25)
where @; (i =1, 2, 3,4,5) are orbits corresponding to conjugacy classes in (5.10).
Applying our general procedure (see (4.4)) and using

Xl =5| +52+83+84+55

x2 =38, — 82+ &84 + nds

x> =738, — 8+ nds + 65

X4 =48;+ 63 — 84 — 85

XS 2531 +52 —83

we denote 1"2—‘/5 by ¢ and 1’—2*/3 by n.
We obtain the (transpose) matrix of characters I'” having the form

1 3 3 4 5
1 -1 -1 0 1
1 0 O 1 -1
1 n —1 0
1 e —1 0

and we get the inverse matrix "'~

S O Wi
wmls Wnlm =
W, WS WD|—

(5.11)

W=
W=
o |
U=
O I
W=



Generalized Kramers—Wannier duality for spin systems with non-commutative symmetry 7689

Hence y = I ly:
1 1 1 1 1

— Y+ -Vttt -ys =7
60)/1 47/2 37/3 57/4 57/5 V1

1 1 V541 1-+/5

- —_ — + —+ = 7

20)/1 4)/2 10 Va4 10 Vs =02

1 1 1— «/g 1+ ﬁ N (5 12)
—VY1I— =W+ + = .
20)/1 4)/2 10 Va4 10 Vs =V3

1 1 1 1 A

15)/1 3)/3 5)/4 5)/5—1/4

1 1 1

Eyl - Z)/z - 5)/3 = Vs
(D) Dihedral group D,. The group D, is the group of symmetry of the regular polygon M,
with n sides. The order of the group D, is 2n. D,, includes the group C, of rotation of the
polygon M, which is the cyclic of order n. Let b be some reflection of M,,, the group D,, then
generates the elements a € C,,,a" = 1 and b, b? = 1 with the relation

bab™' =a7".
So each element of D, can be represented in the form
ba* 0<k<n-—1

The group of characters of D,, is well-known, see e.g. [6].
We consider two different cases

1. D,(n — even). These are the four characters of one-dimensional representations of D,

e ak ba*

x' o1 1 1

x* 1 1 -1

X1 (=D (=Df

¥t 1 (=DE (=D

Two-dimensional representations p" have the form
hk —hk

pat) = (ZO Zf),,k) P (bat) = (ﬁk ‘) ) (5.13)
and the corresponding characters
(@) =" + 727" = 2cosmh/k 7 = exp(2mi/n) xn(ba*) = 0. (5.14)

We get (5 — 1) two-dimensional irreducible representations.
2. D, (n — odd). In this case we have only two one-dimensional representations with the
characters

a® | ba*
x' |1 1
x> 1] -1

The two-dimensional representations and characters are determined by the same formula
as in (5.13) and (5.14).

In this case we get (n — 1)/2 two-dimensional irreducible representations. Following the
classical theorem of Frobenius, that the sum of the square of dimensions of all the irreducible
representations is equal to the order of the group, we conclude that we obtain all irreducible
representations of the dihedral group D,. Using the result of section 4 we construct the KW
transform for the general D,. It is a cumbersome but straightforward procedure. Since we
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already considered the special case S3 = Dj, we choose the simple example of the group D,
with even index.

The simplest non-trivial case is Dy.

Example D,. The group Dy has two generators a, b with the relations a* = b*> = ¢ and
bab™' =a~'.
There are five classes of conjugacy

e,a’, {a,a’}, {b,a’b}, {ab, a’b}}

the table of characters is

e | a* | {a;a’} | {b,a®b} | {ab, a®b}
x' 1] 1 1 1 1
x2 1] 1 1 —1 —1
x> l1] 1 -1 1 -1
x4 1] 1 -1 -1 1
x> 12 =2 0 0 0

We have five characteristic functions §; of orbits
Q =e Q=d Q3 = {a,a®} Q4 = {b,d’b} Qs = {ab, a’b)
and five characteristic functions
d1(e), 82(822), 83(823), 84(824), 85(25).
In our case equations (5.1) are the following:
Xl =51 +52+33+54+55
Xz :51+82+53 —84—85
X =81+8 —83+84— s
X4 =5| +52—(S3 —84+85
x> =28, —26,.

Matrix I' = (le ) has the form

11 1 1 1
1 1 1 -1 -1
1 1 -1 1 -1
1 1 -1 =1 1
2 2 0 0 0
and
1 1 2 2 2
1 1 2 -2 =2
r't=181 1 -2 2 =2
1 1 -2 =2 2
2 2 0 0 0



Generalized Kramers—Wannier duality for spin systems with non-commutative symmetry 7691

Hence y =T''y and

%)/1 + %Vz +tiy+in+t s =

v+ %Vz tiy—im—iys =9
§V1+ %Vz Ll iy —tys =9,
V1 +gy2— Yys—tyit+lys =4

=7

Remark 2. It is well known that group D4 has the same character tables as the group of
quaternions Q. Hence, the set of characters is insufficient to distinct spin systems with values
in groups D4 and Q. However, these systems have the different structure of dual spaces D,
and Q in the sense of definition 3.

This follows, for example, that the group D4 has a cyclic subgroup of order 4 and the
group Q has not.

There also exists another characteristic, the so-called generalized characters introduced
by Frobenius [10]. Generalized characters of order k or k-characters are mappings from

G -G -...G — Cwhichfork = 1 are ordinary characters, see detailsin [11]. The remarkable

k
property of k-characters is the following. One, two and three characters completely determined
the group G. In the case of groups D4 and Q the non-trivial 2-characters are distinct.

6. Conclusion

Our approach to the KW transform has important applications. We briefly discuss some of
them, intending to return to these problems in forthcoming publications.

(A) KW transforms and compact groups. All the constructions of sections 3 and 4 remain
valid if we replace finiteness of the group G with compactness. It means that KW transforms
can be constructed for spin systems with compact group of symmetry.
(B) KW transforms and quantum groups. We refer the reader to [12, 13] for all notation and
following references in the theory of Hopf algebras and quantum groups.

Let us consider the algebra C[G]. If we endow C[G] by the operation of coproduct
A : C[G] — C[G] ® C[G] induced by the multiplication in the group G, the algebra C[G]
becomes a Hopf algebra. Using the natural dual to C[G], the algebra C(G), we are able
to construct another Hopf algebra, (quantum) double D(G) = C[G] ® C(G) [12]. Since
transformations W and W act as W : C(G) - Cand W C[G] —» C,ie. W € C[G] =
Hom(C(G),C) and W € C[G] = Hom(C(G),C) thatis W @ W € D(G). The KW
transform yields explicit solutions of Yang—Baxter equations related to the quantum group
D(G).

This observation leads to very explicit formulae in the structure theory of quantum groups
and quantum spin systems.

And last but not least,
(C) In our paper we consider spin systems with a global non-Abelian symmetry. It is natural
to ask about generalizing the proposed technique to systems with a local (gauge) symmetry.
The study of such systems including Ising and Potts chiral models, Abelian and non-Abelian
gauge fields is very important for quantum field theory and the theory of phase transitions.
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