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Abstract
In 1941 H Kramers and G Wannier discovered a special symmetry which
relates low-temperature and high-temperature phases in the planar Ising model.
The corresponding transformation, the Kramers–Wannier transform, is a
special non-local substitution in the partition function. The existence of such
transformations is a general property of lattice spin systems. Generalization
of the KW transform to spin systems with non-Abelian symmetry is essential
for many problems in statistical physics and field theory. This problem is very
difficult and cannot be carried out by classical methods (like Fourier transform
in the commutative case). We present new results which solve this problem for
finite non-Abelian groups.

PACS numbers: 02.20.−a, 05.50.+q

Introduction

In the classical paper of Kramers and Wannier [1] a special symmetry was discovered,
which relates low-temperature and high-temperature phases in the planar Ising model. The
corresponding transformation, the Kramers–Wannier (KW) transform, is a special nonlocal
substitution of a variable in the partition function. This substitution transforms the partition
function W defined by the initial ‘spin’ variables taking values in Z2 and determined on the
vertices of the original lattice L to the partition function W̃ determined on the dual lattice L∗

spin variables taking values in Z2.
Furthermore, we will use the following transformation of the Boltzmann factor

β → β∗ = arth e−2β β = (kT )−1 (0.1)

to get the correct form of the dual partition function W̃ .
The existence of such transformations is a general property of lattice spin systems that

possess a discrete (and not only discrete) group of symmetry. The KW transform allows the
determination, for many physically important systems, of the point of phase transition in the
cases when the explicit analytical form of a partition function is unknown.
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Generalizations of the KW transform in spin systems with different symmetry groups is
essential for many problems in statistical physics and field theory. In fact, it is very important
to carry out KW transforms for four-dimensional gauge theories in which the corresponding
phases are free quarks and quark confinement. In this case we need to construct KW transforms
for non-Abelian groups.

The KW transform for systems with a commutative symmetry group K, particularly
Zn and Z (like the Ising Z2-model), can be carried out by general methods. In this case the
KW transform is a Fourier transform from a spin system on the lattice L to the spin system on
the dual lattice L̃ with spin variables taking values in group K̂ , the group of characters of K.
This result was obtained by a number of authors, see [2–4] and references therein. From the
mathematical point of view this result is a generalization of the classical Poisson summation
formula for the group Z.

In this paper we present new results which solve this problem for finite non-commutative
groups. Our method was inspired by the recent achievements in the theory of multivalued
groups [5].

The efficacy of our approach will be illustrated by examples of KW transforms for the
icosahedron I5 and dihedral groups Dn. These examples are also interesting for physical
applications, for example, to search out the line of phase transitions in quasicrystals with
icosahedral symmetry or discotic liquid crystals with the symmetry Dn.

The main result of our paper is the definition of the generalized KW transform, based
on the mapping of the group algebra C(G) to the space of complex-valued functions on
G. The construction of this transformation clarifies its real meaning and offers far-reaching
generalization [2, 6, 7].

The layout of the paper is as follows. In section 1 we recall, following [2], the construction
of the KW transform for Abelian groups. In section 2 we introduce some relevant algebraic
notions such as the group algebra C(G) and the space of regular functions C[G]. We also
construct the canonical pairing of C(G) with C[G]. In section 3 we describe orbits of the
adjoint representation and the regular representation of the group G. In section 4 we carry
out the generalized KW transform for finite groups. In section 5 we apply our general results
to special cases of subgroups of the group SO(3), including I5 and Dn. In the conclusion
we discuss some applications of these results, in particular some connections with quantum
groups.

1. KW duality for Abelian systems

Let us recall the construction of KW duality for commutative groups. We shall follow [2]. Let
us consider a planar square lattice L with unit edge. Let x = {xµ} = {x1, x2} (where x1 and
x2 are integers) represent a vertex, and eα

µ = {
e1
µ, e2

µ

} = δα
µ basis vectors of L. We will often

use the notation x + α̂ ≡ {
xµ + eα

µ

}
. A double index x, α is convenient for denoting the edge

in the lattice which connects the vertices x and x + α̂. In what follows we shall also need the
dual lattice, L̃ whose vertices are at the centres of the faces of the original lattice L. We denote
the coordinates of a vertice of L̃ by x̃:

x̃ = {
xµ + 1

2e1
µ + 1

2e2
µ

}
.

We define spin variables sx on vertices of L, these take values in some manifold M, which we
call the spin space. We confine ourselves to the case of a finite set M.
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The simplest Hamiltonian of such a spin system involves only interactions of nearest
neighbours

H =
∑
x,α

H(sx, sx+α̂) (1.1)

where the Hamiltonian H(s, s ′) is a real function of a pair of points from M, with the properties

H(s, s ′) = H(s ′, s) (1.2a)

H(s, s ′) � 0 for arbitrary s s ′ ∈ M H(s, s) = 0. (1.2b)

The Hamiltonian prescribes a structure similar on M to a metric structure (which in the general
case is not metric, since we nowhere require that the triangle inequality holds), which we shall
call the H structure.

Of particular interest are examples in which the manifold M is a homogeneous space,
i.e., there exists a group G of transformations of M which preserves the H structure:
H(gs, gs ′) = H(s, s ′) for arbitrary s, s ′ ∈ M . In this case the spin system has global
symmetry with group G.

Important special cases are systems on groups. For these the spin manifold coincides with
a group G: si = gi ∈ G, and the Hamiltonian is invariant under left and right translations:

H(hg, hg′) = H(gh, g′h) = H(g, g′) for arbitrary h ∈ G. (1.3)

The general H function of the system on the group can therefore be put in the form

H(g1, g2) = H
(
g1g

−1
2

) =
∑

p

h(p)χp

(
g1g

−1
2

)
(1.4)

where χp(g) are the characters of the pth irreducible representations of the group G, and the
constants h(p) are chosen so that H has the properties (1.2) and are otherwise arbitrary.

The partition function of the general spin system with the Hamiltonian (1.1) is

Z =
∑
sx∈M

∏
x,α

W(sx, sx+α) (1.5)

where

W(s, s ′) = exp{−H(s, s ′)}. (1.6)

According to equation (1.2) the function W has the properties

W(s, s ′) = W(s ′, s) 0 � W(s, s ′) � 1 W(s, s) = 1. (1.7)

For the system on a group we have also

W(g1, g2) = W
(
g1g

−1
2

)
W(g−1) = W(g). (1.8)

For a spin system on a group G the sum over states (1.5) can be put in the following
equivalent form:

Z =
∑

gx,α∈G

∏
x,α

W(gx,α)
∏
x̂

δ(Qx̃, I ) (1.9)

where the summation variables gx,α are defined on the edges of the lattice

Qx̃ = gx,1gx+1̂,2g
−1
x+2̂,1

g−1
x,2 (1.10)

and the δ-function is defined by the formula

δ(g, I ) =
{

1 if g = I

0 otherwise.
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In fact, the general solution of the connection equation Qx̃ = I is

gx,α = gxg
−1
x+α̂

and this brings us back to equation (1.5).
Systems on commutative groups are a special case, in which the δ-function in

equation (1.9) can be factorized in the following way:

δ(Qx̃, I ) =
∑

p

χp(Qx̃) =
∑

p

χp(gx,1)χp(gx+1̂,2)χ
−1
p (gx+2̂,1)χ

−1
p (gx,2). (1.11)

This sort of factorization is of decisive importance and allows for a unified presentation of the
KW transform for all commutative groups.

We note that for a commutative group G all irreducible representations are one dimensional
and their characters χp form a commutative group Ĝ (the character group) with a group
multiplication defined in accordance with the tensor product of representations. By definition

χp1p2(g) = χp1(g)χp2(g) χp−1(g) = χ−1
p (g)

and the unit element of G̃ corresponds to the identity representation of G. Accordingly, the
summation in equation (1.11) can be regarded as a summation over the elements of the dual
group Ĝ.

Substituting the expansion (1.11) in equation (1.9), an obvious regrouping of factors yields

Z =
∑

sx,α∈G

∏
x,α

W(gx,α)
∏
x̃

∑
px̃

χpx̃
(gx,1)χpx̃

(gx+1̂,2)χp−1
x̃

(gx+2̂,1)χp−1
x̃

(gx,2)

=
∑
px̃∈G

∏
x̃,α

W̃
(
px̃p

−1
x̃+α̂

)
(1.12)

W̃
(
px̃p

−1
x̃+α̂

) =
∑
g∈G

W(g)χpx̃
(g)χp−1

x̃+α
(g) =

∑
g∈G

W(g)χpx̃p
−1
x̃+α̂

(g). (1.13)

The expression (1.12) defines a new, dual spin system on the dual group Ĝ with a new
Hamiltonian H̃ , which is defined by the formula

exp{−H̃ (p)} = W̃ (p). (1.14)

The result can be formulated in the following way.

Proposition 1.1. A spin system on a commutative group G with a Hamiltonian H(g) (g ∈ G)

is equivalent to a spin system on the character group Ĝ (and on the dual lattice) with the
Hamiltonian H̃ (p)(p ∈ Ĝ) given by the Fourier transform

exp{−H̃ (p)} =
∑
g∈G

exp{−H(g)}χp(g). (1.15)

This is a Kramers–Wannier transform. In contradistinction to the ‘order variables’ gx the
name ‘disorder variables’ can be given to the dual spins px̃ .

2. Algebraic constructions1

(A) The group algebra C(G) of G.
Let G be a finite group of order n with elements {g1 = e, . . . , gn}.

1 For further details of exploiting algebraic constructions one can consult the books [8, 9].
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Definition 1. The group algebra C(G) of G is an n-dimensional algebra over the complex
field C with basis {g1 = e, . . . gn}. A general element u = c(g) ∈ C(G) is

u =
∑

αigi. (2.1)

The product of two elements (convolution) u, v ∈ C(G) is defined as

uv =
(

n∑
i=1

αigi

)(
n∑

i=1

βjgj

)
=

k∑
1

(γkgk) γk =
∑

gigj =gk

αiβj . (2.2)

(B) The ring of functions C[G] on G.

Definition 2. C[G] is a linear space of all complex-valued functions on G and the product is
defined pointwise:

(f1 · f2)(g) = f1(g)f2(g) (2.3)

(C) let us determine the canonical pairing 〈·, ·〉 of these two spaces

C(G) ⊗ C[G] → C

if u ∈ C(G) and f ∈ C[G] then (2.4)

u ⊗ f → 〈u, f 〉 =
∑

αif (gi).

We choose as a basis in C[G] functions such that 〈gi, g
j 〉 = δ

j

i where δ
j

i is the Kronecker
symbol.

This pairing enables us to identify C(G) and C[G] as vector spaces.

3. Canonical actions of group G

We now define two canonical representations, the adjoint representation on C(G) and the
regular representation on C[G].

(A) T (g) : C(G). The adjoint representation is defined on the basis consisting of elements of
G by

g : gi → ggig
−1. (3.1)

The adjoint representation ad G decomposes in the direct sum of irreducible
representations and split C(G) in the sum of subspaces invariant under the adjoint action.

Each irreducible subspace Hi relates to the orbit of ad G (3.1). The number of Hi is equal
to m, the number of elements in the space C(G)/[C(G),C(G)], where [C(G),C(G)] denotes
the commutant of C(G).

(B) T̃ (g) : C[(G]. Let us define the canonical representation T̃ in the space C[G] as the
(right) regular representation as

T (g) : f ⇒ T (g) : f (gk) = f (gkg) g ∈ G f (g) ∈ C[G]. (3.2)

It is well known that in the decomposition of the regular representation into irreducible
ones all irreducible representations appear with multiplicity equal to the dimension of the
representation

T̃ =
∑

dkVk
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where Vk is the irreducible representation of degree k and dk is the degree (dimension) of Vk

(multiplicity of irreducible representation).

Proposition 3.1. The number m of irreducible representations T̃ is equal to the number of
orbits of T.

(C) The canonical scalar product in the space C[G] is

〈f1, f2〉 = 1/n

n∑
k=1

f1(gk)f̄ 2(gk) f1, f2 ∈ C[G]. (3.4)

The characters χi(g) of the irreducible representation of G form the set of orthogonal
functions with respect to the scalar product (3.4).

Now we construct the basis in the space C[G]. Let us choose the character χk(g) and act
on χk(g) by the group G with the help of the right regular representation:

Rgl
χk(g) l = 1, . . . , n. (3.5)

We obtain the space Vk with dim Vk = |χk(g)|2. As a result we get the factorization of
C[G]:

C[G] =
∑
k∈MG

Vk MG = {k = 1, . . . , mG}

where mG is the number of irreducible representations of G.
Orthonormalizing the set of functions (3.5) we obtain the basis in the space Vk . Since

Vk are pairwise orthogonal, applying this procedure to all characters χk we obtain the desired
basis in C[G].

Definition 3. We shall call the dual space Ĝ to G the basis in C[G] which we construct in the
section C.

Motivations for such definition ensue from the case of a commutative group K. The
characters of K are one dimensional and the action of G on characters is simply the
multiplication on the scalar, the eigenvalue of the operator Rg . The derived basis is the same
as the set of elements of the group K̂ .

4. The KW transform for finite groups

Let us consider the adjoint representation ad G of G, on the space C(G), induced by

g : gk → ggkg
−1.

Let us denote by gG
k the orbit relative to the adjoint action for gk ∈ G, and by δk ∈ C[G]

its characteristic function

δk(gs) =
{

1 if gs ∈ gG
k

0 otherwise.

Let mG be the number of conjugacy classes relative to the adjoint action of G. Let us
choose representations of the classes

g1, . . . , gkj
.

Lemma 4.1. A linear map

W : C(G) → C
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satisfies the condition

W(gk) = W
(
glgkg

−1
l

)
(4.1)

for every gl ∈ G,

W =
m∑

j=1

γj δkj
∈ C[G] = Hom(C(G), C)

i.e.

W(gs) =
∑

γj δkj
(gs). (4.2)

We obtain a general form of the adjoint invariant linear mapping, if we choose as γ =
(γ1, . . . , γm), the vector of free parameters.

Now we shall find the form of a general linear mapping

Ŵ : C[G] → C

determined by the characters χi(G).
The set of characters χ1, . . . , χm of the irreducible representation of G form the

orthonormalized basis (relative to the scalar product (3.4)) in C[G]. Here and further χ1

is the character of the trivial one-dimensional representation.
We get Ŵ = ∑

γ̂jχ
j as

Ŵ (ψ) =
m∑

j=1

γ̂j 〈χj , ψ〉 (4.3)

since characters of representations by lemma 4.1 are ad-invariant functions, we introduce the
matrix � = γ l

j using the expansion

χl =
m∑

j=1

γ l
j δkj

. (4.4)

Let us denote by g0, . . . , gm−1 the orthonormalized basis in the algebra C[G], dual to the
basis g0, . . . , gm−1 in the group algebra C(G), i.e.

〈gi, gj 〉 = δi
j .

Let D be the duality map

D : C(G) → C[G] D(gk) = gk. (4.5)

Theorem 4.1. If we pose

γj =
m∑

l=1

γ l
j γ̂l j = 1, . . . , m

then by the canonical duality D the linear map

W : C(G) → C W(g) =
m∑

j=1

γj δkj
(g)

passes to the linear map

Ŵ : C[G] → C Ŵ (ψ) =
m∑

j=1

γ̂j 〈χj , ψ〉
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and maps W and Ŵ themselves will be determined by the same function, more precisely

W(gs) =
m∑

j=1

γj δkj
(gs) = n

m∑
j=1

γ̂jχ
j (gs) = nŴ(gs). (4.6)

Proof. For any gs we have

W(gs) =
m∑

j=1

γj δkj
(gs) =

m∑
j=1

m∑
l=1

γ l
j γ̂lδkj

(gs) =
m∑

l=1

γ̂l


 m∑

j=1

γ l
j δkj


 (gs)

=
m∑

l=1

γ̂lχ
l(gs) = n

m∑
l=1

γ̂l〈χl, gs〉 = nŴ(gs).
�

Definition 4. We shall call the transform

W(gs) =
∑

γj δkj
(gs) → Ŵ (gs) = 1/n

∑
l

γlχ
l(gs) where γj =

m∑
l=1

γ l
j γ̂l (4.7)

is the Kramers–Wannier transform for finite groups.

In the next section we consider several examples which confirm the coincidence of our
approach with the former one in the known cases and enables us to find explicit KW transforms
in some earlier unknown cases.

5. Examples

(A) Commutative case G = Zn. Let us consider first the special case G = Z3 = {1, g, g2}.
In this case δj = δ(g − gj−1), j = 1, 2, 3. Then

χ1 = δ1 + δ2 + δ3

χ2 = δ1 + zδ2 + z2δ3 (5.1)

χ3 = δ1 + z2δ2 + zδ3 as z4 = z

where z = exp 2π i/3, and χk(gj ) = z(k−1)j (k = 1, 2, 3) are the characters of one-
dimensional representations. Hence

� = (
γ l

j

) =

1 1 1

1 z z2

1 z2 z


 (5.2)

and we get γ̂ = �−1γ.

If we choose γ1 = 1, γ2 = γ3 = γ , we obtain

γ̂1 = 1 + 2γ

3
γ̂2 = γ̂3 = 1 − γ

3
(5.3)

and hence

γ̂2/γ̂1 = 1 − γ

1 + 2γ
. (5.4)
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For the general case of the group Zn we have to replace the formula (5.1) for characters
χ1, . . . , χn with

χ1 = δ1 + δ2 + · · · + δn

χ2 = δ1 + zδ2 + zn−1δn

...

χn
l = δ1 + z(n−1)δ2 + zδn

(5.5)

and for � = (
γ l

j

)
we get

� =




1 1 · · · 1
1 z · · · zn−1

· · · · · · · · · · · ·
1 zn−1 · · · z


 (5.6)

In the special case of choosing parameters γj :

γ1 = 1, γ2, . . . , γn = γ

we obtain
γ̂j

γ̂1
= 1 − γ

1 + (n − 1)γ
. (5.7)

These formulae coincide with the similar one in [2].

(B) The group S3. This is the first non-trivial example of non-Abelian groups which was
studied in [2]. Following our general approach we split the group S3 in three classes of
conjugacy elements or three orbits:

S3 = {	1 = {e} 	2 = {a, a2} 	3 = {b, ab, a2b}}.
The characteristic functions are

δ1 = δ(	1) = δ(g − e) δ2 = δ(	2) δ3 = δ(	3).

Following our general procedure (see (4.4)) and using

χ1 = δ1 + δ2 + δ3 χ2 = δ1 + δ2 − δ3 χ3 = 2δ1 − δ2

we get the matrix

� = (
γ l

j

) =

1 1 1

1 1 −1
2 −1 0




and hence γ̂ = �−1γ

γ̂1 = 1
6 (γ1 + 2γ2 + 3γ3)

γ̂2 = 1
6 (γ1 + 2γ2 − 3γ3) (5.8)

γ̂3 = 1
3 (γ1 − γ2)

with the following relation:

γ̂1 + γ̂2 + 2γ̂3 = γ1.

If we choose the free parameters γ1, γ2, γ3 as 1, γ2, γ3 we obtain two independent
parameters η̂1, η̂2

η̂1 = γ̂2

γ̂1
= 1 + 2γ2 − 3γ3

1 + 2γ2 + 3γ3
η̂2 = γ̂3

γ̂1
= 2(1 − γ2)

1 + 2γ2 + 3γ3
(5.9)

which coincide with the formula (5.7) in [2].
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Remark 1. Let us mention the missing factor 2 in the nominator of η̂2 in (5.7) in [2].

(C) The group of icosahedron I5. This group is isomorphic to A5, the group of even
permutations of five elements. The order of the group is equal to 60. The theory of irreducible
representations of A5 is well known, see e.g. [6]. We summarize the necessary facts. There
are five classes of conjugacy with representatives

e, a1 = (12)(34) a2 = (123) a3 = (12345) a4 = (21345). (5.10)

The number of characters of irreducible representations is also equal to 5. Following [6] we
present the table of characters:

e (12)(34) (123) (12345) (21345)

χ1 1 1 1 1 1

χ2 3 −1 0 1+
√

5
2

1−√
5

2

χ3 3 −1 0 1−√
5

2
1+

√
5

2
χ4 4 0 1 −1 −1
χ5 5 1 −1 0 0

1 15 20 12 12

The last line indicates the number of elements in each conjugacy class. The characteristic
functions have the form

δ1 = δ(	1) = δ(g − e) δ2 = δ(	2) δ3 = δ(	3) δ4 = δ(	4) δ5 = δ(	5)

where 	i (i = 1, 2, 3, 4, 5) are orbits corresponding to conjugacy classes in (5.10).
Applying our general procedure (see (4.4)) and using

χ1 = δ1 + δ2 + δ3 + δ4 + δ5

χ2 = 3δ1 − δ2 + εδ4 + ηδ5

χ3 = 3δ1 − δ2 + ηδ4 + εδ5

χ4 = 4δ1 + δ3 − δ4 − δ5

χ5 = 5δ1 + δ2 − δ3

we denote 1+
√

5
2 by ε and 1−√

5
2 by η.

We obtain the (transpose) matrix of characters �′ having the form


1 3 3 4 5
1 −1 −1 0 1
1 0 0 1 −1
1 ε η −1 0
1 η ε −1 0




and we get the inverse matrix �′−1


1
60

1
4

1
3

1
5

1
5

1
20 − 1

4 0 ε
5

η

5
1

20 − 1
4 0 η

5
ε
5

1
15 0 1

3 − 1
5 − 1

5
1

12
1
4 − 1

3 0 0




(5.11)
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Hence γ̂ = �′−1γ :
1

60
γ1 +

1

4
γ2 +

1

3
γ3 +

1

5
γ4 +

1

5
γ5 = γ̂1

1

20
γ1 − 1

4
γ2 +

√
5 + 1

10
γ4 +

1 − √
5

10
γ5 = γ̂2

1

20
γ1 − 1

4
γ2 +

1 − √
5

10
γ4 +

1 +
√

5

10
γ5 = γ̂3

1

15
γ1 − 1

3
γ3 − 1

5
γ4 − 1

5
γ5 = γ̂4

1

12
γ1 − 1

4
γ2 − 1

3
γ3 = γ̂5.

(5.12)

(D) Dihedral group Dn. The group Dn is the group of symmetry of the regular polygon Mn

with n sides. The order of the group Dn is 2n. Dn includes the group Cn of rotation of the
polygon Mn which is the cyclic of order n. Let b be some reflection of Mn, the group Dn then
generates the elements a ∈ Cn, a

n = 1 and b, b2 = 1 with the relation

bab−1 = a−1.

So each element of Dn can be represented in the form

bak 0 � k � n − 1

The group of characters of Dn is well-known, see e.g. [6].
We consider two different cases

1. Dn(n− even). These are the four characters of one-dimensional representations of Dn

e ak bak

χ1 1 1 1
χ2 1 1 −1
χ3 1 (−1)k (−1)k

χ4 1 (−1)k (−1)k+1.

Two-dimensional representations ρh have the form

ρh(ak) =
(

zhk 0
0 z−hk

)
ρh(bak) =

(
0 z−hk

zhk 0

)
(5.13)

and the corresponding characters

χh(a
k) = zhk + z−hk = 2 cos πh/k z = exp(2π i/n) χh(bak) = 0. (5.14)

We get ( n
2 − 1) two-dimensional irreducible representations.

2. Dn(n − odd). In this case we have only two one-dimensional representations with the
characters

ak bak

χ1 1 1
χ2 1 −1

The two-dimensional representations and characters are determined by the same formula
as in (5.13) and (5.14).

In this case we get (n − 1)/2 two-dimensional irreducible representations. Following the
classical theorem of Frobenius, that the sum of the square of dimensions of all the irreducible
representations is equal to the order of the group, we conclude that we obtain all irreducible
representations of the dihedral group Dn. Using the result of section 4 we construct the KW
transform for the general Dn. It is a cumbersome but straightforward procedure. Since we
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already considered the special case S3 = D3, we choose the simple example of the group Dn

with even index.

The simplest non-trivial case is D4.

Example D4. The group D4 has two generators a, b with the relations a4 = b2 = e and
bab−1 = a−1.

There are five classes of conjugacy

e, a2, {a, a3}, {b, a2b}, {ab, a3b}}
the table of characters is

e a2 {a; a3} {b, a2b} {ab, a3b}
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 2 −2 0 0 0

We have five characteristic functions δi of orbits

	1 = e 	2 = a2 	3 = {a, a3} 	4 = {b, a2b} 	5 = {ab, a3b}
and five characteristic functions

δ1(e), δ2(	2), δ3(	3), δ4(	4), δ5(	5).

In our case equations (5.1) are the following:

χ1 = δ1 + δ2 + δ3 + δ4 + δ5

χ2 = δ1 + δ2 + δ3 − δ4 − δ5

χ3 = δ1 + δ2 − δ3 + δ4 − δ5

χ4 = δ1 + δ2 − δ3 − δ4 + δ5

χ5 = 2δ1 − 2δ2.

Matrix � = (
γ l

j

)
has the form




1 1 1 1 1
1 1 1 −1 −1
1 1 −1 1 −1
1 1 −1 −1 1
2 −2 0 0 0




and

�−1 = 1/8




1 1 2 2 2
1 1 2 −2 −2
1 1 −2 2 −2
1 1 −2 −2 2
2 −2 0 0 0
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Hence γ̂ = �−1γ and

1
8γ1 + 1

8γ2 + 1
4γ3 + 1

4γ4 + 1
4γ5 = γ̂1

1
8γ1 + 1

8γ2 + 1
4γ3 − 1

4γ4 − 1
4γ5 = γ̂2

1
8γ1 + 1

8γ2 − 1
4γ3 + 1

4γ4 − 1
4γ5 = γ̂3

1
8γ1 + 1

8γ2 − 1
4γ3 − 1

4γ4 + 1
4γ5 = γ̂4

1
4γ1 − 1

4γ2 = γ̂5

Remark 2. It is well known that group D4 has the same character tables as the group of
quaternions Q. Hence, the set of characters is insufficient to distinct spin systems with values
in groups D4 and Q. However, these systems have the different structure of dual spaces D̂n

and Q̂ in the sense of definition 3.
This follows, for example, that the group D4 has a cyclic subgroup of order 4 and the

group Q has not.
There also exists another characteristic, the so-called generalized characters introduced

by Frobenius [10]. Generalized characters of order k or k-characters are mappings from
G · G · . . . G → C︸ ︷︷ ︸

k

which for k = 1 are ordinary characters, see details in [11]. The remarkable

property of k-characters is the following. One, two and three characters completely determined
the group G. In the case of groups D4 and Q the non-trivial 2-characters are distinct.

6. Conclusion

Our approach to the KW transform has important applications. We briefly discuss some of
them, intending to return to these problems in forthcoming publications.

(A) KW transforms and compact groups. All the constructions of sections 3 and 4 remain
valid if we replace finiteness of the group G with compactness. It means that KW transforms
can be constructed for spin systems with compact group of symmetry.
(B) KW transforms and quantum groups. We refer the reader to [12, 13] for all notation and
following references in the theory of Hopf algebras and quantum groups.

Let us consider the algebra C[G]. If we endow C[G] by the operation of coproduct
� : C[G] → C[G] ⊗ C[G] induced by the multiplication in the group G, the algebra C[G]
becomes a Hopf algebra. Using the natural dual to C[G], the algebra C(G), we are able
to construct another Hopf algebra, (quantum) double D(G) = C[G] ⊗ C(G) [12]. Since
transformations W and Ŵ act as W : C(G) → C and Ŵ : C[G] → C, i.e. W ∈ C[G] =
Hom(C(G), C) and Ŵ ∈ C[G] = Hom(C(G), C) that is W ⊗ Ŵ ∈ D(G). The KW
transform yields explicit solutions of Yang–Baxter equations related to the quantum group
D(G).

This observation leads to very explicit formulae in the structure theory of quantum groups
and quantum spin systems.

And last but not least,
(C) In our paper we consider spin systems with a global non-Abelian symmetry. It is natural
to ask about generalizing the proposed technique to systems with a local (gauge) symmetry.
The study of such systems including Ising and Potts chiral models, Abelian and non-Abelian
gauge fields is very important for quantum field theory and the theory of phase transitions.
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